
SpikingSIM: A Bio-Inspired Spiking Simulator
Junwei Zhao1, Shiliang Zhang1,∗, Lei Ma1,2,∗, Zhaofei Yu1, Tiejun Huang1,2

1Institute of Digital Media, Peking University, Beijing, China
2Beijing Academy of Artificial Intelligence, Beijing, China

Abstract—Large-scale neuromorphic dataset is costly to con-
struct and difficult to annotate because of the unique high-speed
asynchronous imaging principle of bio-inspired cameras. Lacking
of large-scale annotated neuromorphic datasets has significantly
hindered the applications of bio-inspired cameras in deep neural
networks. Synthesizing neuromorphic data from annotated RGB
images can be considered to alleviate this challenge. This paper
proposes a simulator to generate simulated spiking data from
images recorded by frame cameras. To minimize the deviations
between synthetic data and real data, the proposed simulator
named SpikingSIM considers the sensing principle of spiking
cameras, and generates high-quality simulated spiking data, e.g.,
the noises in real data are also simulated. Experimental results
show that, our simulator generates more realistic spiking data
than existing methods. We hence train deep neural networks
with synthesized spiking data. Experiments show that, the net-
work trained by our simulated data generalizes well on real
spiking data. The source code of SpikingSIM is available at
http://github.com/Evin-X/SpikingSIM.

Index Terms—Bio-inspired Camera, Simulation, Neuromor-
phic Computing, Classification

I. INTRODUCTION

Bio-inspired cameras work in different principle with con-
ventional frame cameras [1]. Instead of capturing images at a
fixed frame rate, each pixel of bio-inspired cameras simulates
a retinal photosensitive cell, i.e., perceiving light and firing
spikes asynchronously [2, 3]. Compared with frame cameras,
bio-inspired cameras enjoy the advantages of high temporal
resolution and high dynamic range [4], making them have been
gaining more and more attention in computer vision tasks like
detection [5–7], tracking [8–10], recognition [11, 12], optical
flow estimation [13–15], and intensity-image reconstruction
[16, 17], etc. Current bio-inspired cameras can be classified
into two categories, i.e., event cameras and spiking cameras,
respectively. Different from the differential sampling principle
of event cameras that measure the relative brightness change
[18], spiking cameras are based on the integral sampling prin-
ciple. Each pixel of spiking cameras encodes the brightness
intensity over a short time period into spikes, thus reserves
more brightness cues than event cameras [19, 20].

Deep learning frameworks have demonstrated remarkable
performance in vision tasks. Training deep models requires
a huge amount of annotations, while annotating large-scale
neuromorphic dataset is expensive and difficult due to the char-
acteristics of asynchronous streams. One of feasible solutions
is to design simulators to generate synthetic neuromorphic data
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Fig. 1. The SpikingSIM converts existing large scale image datasets into
synthetic spiking datasets. Deep networks trained on the synthetic data
generalize well to real spiking data. This simulator brings potentials of
applying annotations in existing image datasets to neuromorphic vision, and
promotes the applications of spiking cameras in high-level vision tasks.

from available image/video datasets, as illustrated in Fig. 1.
For instance, Rebecq et al. [21] proposed ESIM, the first
simulator for event cameras. Based on the ESIM, V2E toolbox
[22] was developed as an extension to provide a circuit-level
simulation model. Zhu et al. [23] proposed an end-to-end
generative model to convert labeled images into events.

Although many simulators have been designed for event
cameras, the research of simulating spiking cameras is still at
an early stage. Lacking of annotated spiking datasets makes
most of current researches focus on low-level vision tasks such
as image reconstruction [24–26] and denoising [27]. It is hence
appealing to study effective simulator to generate spiking data.
Zhao et al. [24] developed a simulator for a spiking camera to
generate synthesized spiking streams for image reconstruction.
This method is based on an ideal integrate-and-fire model
without considering noises. This defect makes it not capable
to simulate realistic spiking data, and limits its application in
training deep networks for high-level vision tasks.

This paper targets to generate more accurate simulated
spiking data based on the working principle of spiking cam-
eras. Specifically, we derive the relation between brightness
intensity and the spike generation. Based on the brightness-
spike relation, we utilize the grayscale of images to simulate
brightness for generating spikes. The source and distribution
of noises are also considered to simulate realistic noises in
spiking data. We compare the generated spiking data against a
real spiking dataset, achieving the similarity of 99%. Besides,
as illustrated in Fig. 1, we test the generalization capability of
the model trained on synthetic spiking data in classification
tasks. On the spike-MNIST dataset collected by using a
spiking camera to record the digits from MNIST dataset, the
transferred model achieves 96% classification accuracy.

To our best knowledge, it is the first open-source spiking
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TABLE I
BASIC TECHNICAL PARAMETERS OF THE SENSOR

Parameter Value Parameter Value
Spatial Resolution (WH) 400×250 Operating Clock(CLK) 10MHz

Supply Voltage (Vdd) 3V Ref. Voltage (Vref ) 1V
Capacitance (Cpd) 15fF Time Resolution (Tr) 25µs

Fig. 2. Illustration of the working principle of spiking cameras.

simulator which considers both the brightness-spike relation
and noise simulation. Experiments show that, this simulator
provides more realistic synthetic spiking data than existing
methods. The deep models trained by the synthetic data
generalize well on real spiking data. This demonstrates the
effectiveness of our simulation method.

II. WORKING PRINCIPLE OF SPIKING CAMERAS

We first briefly introduce the working principle of the
spiking camera adopted in [25]. Our simulation algorithm
is proposed for this camera. The basic parameters of this
spiking sensor are summarized in Tab. I. Fig. 2 (a) shows that
each pixel of the spiking camera comprises three parts: the
spike trigger, reset and readout circuits, respectively. Fig. 2
(b) shows the working principle of the camera, which has
three states, i.e., integration, reset, and readout, respectively.
In the integration state, the photo-diode in each pixel converts
the photocurrent Iph into the voltage Vph on capacitance Cpd.
As the photo-diode continues to generate electric charges, the
voltage Vph will decrease. When Vph reaches the reference
voltage Vref , the comparator flips over. Once the reset circuit
detects the flip signal, the pixel enters the reset state. The
reset circuit then generates a 1-bit signal to reset the photo-
diode. After a very short time interval, a new integration
stage is resumed. Meanwhile, the 1-bit signal is stored in the
readout circuit. In the readout state, the signal stored in the
readout circuit is transmitted to the data bus by a scanning
clock (40KHz). Thus, the maximum spike firing frequency is
40KHz, which leads to the time resolution of spiking camera
is Tr=25µs. Afterwards, the readout circuit clears its storage.

According to the above analysis and Fig. 2, the condition
that a pixel emits a spike can be formulated as, i.e.,

1

Cpd

∫ t+∆t

t

Iphdt ≥ θ, (1)

where ∆t is the time period of integration, the firing threshold
defined as θ=Vdd−Vref , Vdd is the supply voltage. We denote
1

Cpd

∫
Iphdt as Vp for simplification. Fig. 2 (b) illustrates
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Fig. 3. Illustration of the simulation task.

the generated spike stream. It can be observed that, stronger
brightness leads to a faster decreasing Vph and more frequent
spikes. Assuming the brightness of a pixel is stable, we can
derive the relation between its spike firing frequency fs and
Iph as follows:

fs =
1

∆t
=

Iph
θCpd

, (2)

where the maximum fs equals to the scanning clock of the
readout circuit, i.e., 40KHz.

III. METHOD

A. Formulation
As shown in Fig. 3, suppose we use a spiking camera and a

frame camera to record the same visual scene, S and G denote
the resulting spiking stream and image, respectively. Our goal
is to generate the synthetic spike streams Ŝ from image G,
meanwhile minimizing the differences between Ŝ and S, i.e.,

Ŝ∗ = argmin
Ŝ

M(S, Ŝ), (3)

where Ŝ is generated from a spiking simulator F , which
uses the image G as input. M(·) computes the differences
between two spiking streams. Note that two spike streams
can be regarded as similar if they have 1) similar spike firing
frequency fs, and 2) similar distributions on spike intervals.
F is the key of this simulation model. Note that the firing

frequency of spikes encodes the brightness cues. To simulate a
similar spike firing frequency, F is expected to build the pixel-
wise relation between G and S. In other words, the fs of a
certain pixel in Ŝ is determined by the corresponding pixel
value in G, and larger pixel values corresponds to larger fs.
Sec. IV-B derives the relation based on the working principle
of spiking cameras and experimental results.

In real scenarios, the spike generation procedure is affected
by noises, making the generated spike streams show varied
spike intervals as illustrated in Fig. 2 (b). According to the
source of noises, we categorize noises into two types. One
comes from the diffuse reflection, the other is inherent noise
caused by manufacture, e.g., dark current, mismatch of capaci-
tor and transistor. To make the synthetic spiking data has more
realistic distributions on spike intervals, we experimentally
study the distribution of noise and add them into the simulation
procedure, which is demonstrated in Sec. IV-C.

By considering the diffuse noise N1 and inherent noise N2,
we denote the simulator F , as well as its output Ŝ as,

Ŝ = F(G+N1, T ) +N2, (4)

where, T denotes the time of exposure for recording image
G, and the simulator F(·) is derived based on the relation
between G and S. The simulated Ŝ is a spiking stream with
time duration of T .
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Fig. 4. The experiments supporting the derivation of the simulation method.

B. Analysis of the Image-Spike Relation

We first determine the relation between G and the brightness
intensity I of a scene, then derive the relation between I and
the spike firing frequency fs. Note that the grayscale of G
is commonly linearly proportional to I in CCD based frame
cameras. We hence could simply formulate the imaging of G
as G = λI , where λ is a constant.

To simulate the fs of spikes generated by F , we proceed to
derive the relation between fs and I . As shown in Eq. (2), fs
is linearly associated with Iph. We assume that Iph = R(I),
and derive the relation between fs and I from Eq. (2) as:

fs = R(I)/(θCpd). (5)

Due to the difficulty of measuring the function R(·), we
construct experiments to directly determine the relation be-
tween fs and I , based on experimental settings as shown in
Fig. 4 (a). The experimental results in Fig. 4 (b) show that,
when the brightness intensity is lower than the turning point
Is (i.e., the 11000 Lux brightness producing the maximum
40KHz spike frequency), fs is approximately linearly propor-
tional to I . It indicates that Iph is linearly correlated with I as
well. The corresponding linear parameter η can be calculated
as 1.09e-13. When I is higher than Is, fs keeps the maximum
firing frequency fmax=

1
Tr

= 40KHz. According to Fig. 4 (b),
the relation between fs and G can be formulated as:

fs=

{
(ηG)/(λθCpd), I ≤ Is

1/Tr , I > Is
(6)

We hence use Eq. (6) to simulate fs for each pixel, given its
brightness in image G. This results in a spiking stream with
a uniform interval.

C. Analysis of the Noise

In real scenarios, the number of photons that reach the sens-
ing chip through diffuse reflection is randomly distributed over
a time period [28], leading to varied spike intervals. Poisson
distribution is commonly used for modeling the distribution
of random events, and has been employed in modeling image
noise [29]. Therefore, we adopt the Poisson model into the
spike simulation process to model diffuse noise. We assume

Algorithm 1 The Simulation Algorithm
Input: The luminance intensity Gp of the pixel p on the image G, the

simulation time T = NTr .
Output: The simulated spike streams Ŝp={Ŝ(p, n)}n=1,..,N at location p.
1: Initialize: the spike streams Ŝp with each spike Ŝ(p, n) = 0, the noise

matrix N2 ∼ N (k|µ, σ) ▷ N is the Gaussian Model
2: for each time interval n in range [1, N ] do
3: Initialize: noise matrix N1 ∼ P(k|Tr, γ) ▷ P is the Poisson Model
4: for each time unit t in range [1,Tr

δt
] do

5: Gp ← Gp +N1(t)
6: Vp(t)← Vp(t−1) + η

λCpd
Gp · δt

7: if Vp(t) ≥ θ then Ŝ(p, n)← 1, Vp(t)← 0 end if
8: end for
9: if N2(n) ̸= 0 then Ŝ(p, n)← 1 end if

10: end for

FlowerGallery Lake Street

Fig. 5. Visualization of the reconstructed images from a spiking dataset.

that the probability of k noise photons arriving at a pixel in a
time unit δt (δt= 2

CLK ) is γ, and the time period is Tr. Thus,
the probability distribution function of the Poisson model can
be formulated as:

P(k|Tr, γ) =
(γTr)

k

k!
e−γTr . (k = 0, 1, 2...) (7)

The inherent noise leads to fired spikes in the absence of
light, as shown in Fig. 4 (c). To investigate the distribution of
the inherent noise, we cover the spiking camera with a lens
cap, then record the emitted spiking data in a time period (e.g.,
1s). We count the Inter-Spike Interval (ISI) of the recorded data
and draw the results in Fig. 4 (d). The results show that the
distribution of ISI can be approximately fitted by a Gaussian
model (ISI=k, mean(µ)=140, and std(σ)=50) denoted as,

N (k|µ, σ) = 1

σ
√
2π

· e− 1
2 ·(

k−µ
σ )2 , (k = 0, 1, 2...) (8)

which is hence used to amend the distribution of spike intervals
based on the computed fs in Eq. (6).

D. Implementation of the Simulation Method

Eq. (6) and Eqs. (7, 8) make it possible to simulate F and
noises N1 and N2. The RGB images are first converted to
YUV images, which are hence used for the simulation. Eq. (6)
establishes the relation between each pixel value and its spike
firing frequency. Eq. (7) and Eq. (8) add noise during the
simulation for improving the data reality. The asynchronous
imaging principle allows us to compute the spiking stream for
each pixel independently. We take a pixel p as an example to
demonstrate the simulation, as illustrated in Algorithm 1.

IV. EXPERIMENTS

A. Validity of the Simulation Method

Implementation Details: We perform experiments on the
spiking dataset adopted by [17, 24], which is captured by a
spiking camera. The spike streams in this dataset record the
real world scenes including gallery, lake, flower, street, etc.
Firstly, we reconstruct intensity maps from raw spikes through
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TABLE II
THE RESULTS OF VALIDATION EXPERIMENTS.

Metric Method
Simulation time: 2.5ms Simulation time: 5ms Simulation time: 7.5ms Simulation time: 10ms

Gallery Lake Flower Street Gallery Lake Flower Street Gallery Lake Flower Street Gallery Lake Flower Street

M1

PSS [30] 0.589 0.611 0.632 0.785 0.642 0.667 0.701 0.842 0.718 0.736 0.758 0.857 0.745 0.762 0.786 0.887
IFM [24] 0.594 0.627 0.653 0.781 0.654 0.691 0.727 0.825 0.731 0.745 0.763 0.843 0.763 0.776 0.797 0.883

Ours 0.991 0.993 0.993 0.994 0.993 0.995 0.995 0.996 0.995 0.995 0.996 0.997 0.995 0.996 0.996 0.997

M2

PSS [30] 24.583 23.494 20.361 18.896 7.188 7.134 7.015 5.872 3.357 3.316 3.233 2.578 1.889 1.828 1.437 0.791
IFM [24] 22.744 21.381 19.963 19.117 7.109 7.011 6.897 6.132 3.293 3.276 3.132 2.733 1.837 1.801 1.343 0.957

Ours 0.081 0.079 0.057 0.044 0.073 0.066 0.045 0.031 0.070 0.062 0.041 0.026 0.069 0.057 0.035 0.023
∗ (1) Larger(smaller) values of D1 (D2 ) indicates the larger similarity between S and Ŝ. (2)D1 ∈ [0, 1], D2 ∈ [0,+∞).

Fig. 6. Testing the generalization of the model trained by simulated data.

the Texture-From-Window (TFW) method [17], as visualized
in Fig. 5. Given a spike stream with a time length T , the
intensity of each pixel can be calculated as n

N according to
TFW, where n is the number of spikes, and N = T

Tr
is the

number of time intervals. Then, we use those intensity maps
to simulate spike streams via SpikingSIM, and calculate the
similarity between the simulated spiking data and real spiking
data. Note that the time length of simulated spikes is as same
as the time length of the raw data used for reconstructing
images. In addition, we compare the SpikingSIM with recent
related works. Lee et al. [30] provided a spike generation
approach for converting images into Poisson-distributed Spike
Streams (PSS). Zhao et al. [24] developed a simulator for a
spiking camera based on an Integrate-and-Fire Model (IFM).

Evaluation Metrics: We adopt two metrics to calculate the
similarity between the simulated data and real data. The first
metric is to measure the similarity of spike firing frequency
of each pixel. Assuming that a stream of spikes can be repre-
sented as a matrix with the dimension of N×M (M=W×H),
the spike firing frequency of the pixel p can be calculated as
fp(·)= n

N , where n is the number of spikes. Thus, this metric
is represented as:

M1(S, Ŝ) =
1

M

M∑
p=1

(1− |fp(S)− fp(Ŝ)|
fp(S)

). (9)

The second metric uses Kullback-Leibler Divergence (KLD)
to further measure the distribution differences between simu-
lated data and real data. Assuming that the probability of the
pixel p firing (not firing) spikes can be denoted as P (Sp=1)
(P (Sp=0)), the KLD metric can be formulated as:

M2(S, Ŝ) =

M∑
p=1

∑
i=0,1

P (Sp= i) log2
P (Sp= i)

P (Ŝp= i)
. (10)

Experimental Results: The evaluation results are summa-
rized in Tab. II. The values of M1 show that SpikingSIM
achieves 99% similarity with real data in spike firing fre-
quency. The metric of M2 shows that our simulated data
is quite similar with the original data in spike distribution.
It is also clear that, our simulation method significantly
outperforms the other methods. The remarkable performance
can be attributed to the derivation of brightness-spike relation
and the simulation of noises through experiments.

B. Experiments on Model Generalization
We further test the generalization ability of neural networks

trained on our synthesized dataset. As shown in Fig. 6,
we convert the image samples in MNIST dataset [31] into
spike streams, and use synthesized data to train a LeNet-
5 [31] (model structure: 32C5-AP2-64C5-AP2-FC256-FC10).
We hence construct a real spiking dataset, named spike-
MNIST for testing. Specifically, we randomly select 100
samples from the test set of MNIST dataset, and use a spiking
camera to record 1ms of those digits. The LeNet-5 trained
with the SpikingSIM achieves the classification accuracy of
96% on spike-MNIST dataset. As a comparison, we also adopt
the synthetic data generated from the PSS [30] and IFM [24]
to train models, which achieve the accuracy of 87% and
91%, respectively. This result demonstrates that our simulation
method is more effective in generating annotated spiking data
for model training. This is mainly benefited from its capability
to generate more realistic spiking data.

C. Discussions
Data Augmentation: The SpikingSIM can also be adopted

to convert video datasets to spiking data. This allows to use
the massive video annotations in computer vision tasks, e.g.,
motion detection, tracking and action recognition, in spiking
neural network training, which is potential to alleviate the
scarcity of neuromorphic dataset and annotations.

Virtual Camera in Synthetic Scenarios: Certain scenarios
with high speed motions, such as car collisions, are crucial
for computer vision tasks such as autonomous driving, but
are hard to acquire data. Most of existing approaches collect
datasets for such scenarios through simulation platforms, such
as CARLA [32]. Our model can be integrated into the simula-
tion platforms as an embedded module, i.e., playing the role of
a virtual camera. The advantage of this approach is that both
the scenario parameters (e.g., brightness condition, car speed,
etc.) and camera parameters (e.g., camera viewpoint, spacial
and temporal resolution, etc.) are adjustable, thus enjoys plenty
of flexibility and can provide comprehensive settings to study
the applications of spiking cameras in such applications.

V. CONCLUSION

Insufficient neuromorphic annotations have severely lim-
ited the applications of spiking cameras in deep neural net-
works. This work provides an effective solution by proposing
a simulator for spiking cameras. This simulator generates
high-quality synthetic spiking data from conventional image
datasets. We verify that the deep neural networks trained on
synthetic data generalize well on real spiking data. Moreover,
our released codes will facilitate the neuromorphic community.
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